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Abstract. We present exact calculations of chromatic polynomials for families of cyclic graphs
consisting of linked polygons, where the polygons may be adjacent or separated by a given number
of bonds. From these we calculate the (exponential of the) ground state efittdijoy,theq-state

Potts model on these graphs in the limit of infinitely many vertices. A number of properties are
proved concerning the continuous locigs,of nonanalyticities inW. Our results provide further
evidence for a general rule concerning the maximal region in the comgpiéane to which one

can analytically continue from the physical interval wh&ge> 0.

1. Introduction

The g-state Potts antiferromagnet (AF) [1, 2] exhibits nonzero ground state enfgopy,0
(without frustration) for sufficiently large on a given graph or lattice. This is equivalent

to a ground state degeneracy per site> 1, sinceSy = kpzIn W. Such nonzero ground
state entropy is important as an exception to the third law of thermodynamics [3]. The zero-
temperature partition function of the above-mentiopesiate Potts antiferromagnet on a graph

G satisfiesZ(G,q, T = 0)par = P(G, q), Where P(G, q) is the chromatic polynomial
expressing the number of ways of colouring the vertices of the gtaplith ¢ colours such

that no two adjacent vertices have the same colour [4-6]. Thus

WG}, ¢) = lim P(G, ¢)¥" (1.2)

wheren = v(G) is the number of vertices @ and{G} = lim,_, ., G. The minimum number
of colours needed for this colouring 6f is called its chromatic numbey,(G). At certain

special pointg, (typicallyg, =0, 1, ..., x(G)), one has the noncommutativity of limits
lim lim P(G,q)Y" # lim lim P(G, ¢)¥" (1.2)
g—>qs n—>00 n—00 g—qs

and hence it is necessary to specify the order of the limits in the definititin(of}, ¢;) [7].

Asin [7], we shall use the first order of limits here; this has the advantage of removing certain
isolated discontinuities if¥. In addition to [2—7], some other previous related works include
[8-22]. SinceP (G, q) is a polynomial, one can generalizérom Z. to R and indeed tc.
W({G}, q) is areal analytic function for regldown to a minimum value;.({G}) [7,14]. For

a given{G}, we denote the continuous locus of non-analyticitie#aiss. This locus forms

as the accumulation set of the zero@l5, ¢) (chromatic zeros of;) asn — oo [7,9,10,12]
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and satisfied3(q) = B(g*). A fundamental question concerning the Potts antiferromagnet
is the form of this locus for a given graph family or lattice and, in particular, the maximal
region in the compley plane to which one can analytically continue the funcibG}, q)
from physical values where there is nonzero ground state entropyi.e-,1. We denote
this region asR;. Further, we denote ag the maximal point wherg intersects the real axis,
which can occur viad3 crossing this axis or via a line segment®fying along this axis.

In this work we present exact calculations”xfG, ¢) andW ({G}, ¢) for families of cyclic
graphs consisting of linked polygons, where the polygons may be adjacent or separated by a
certain number of bonds. By the term cyclic we mean that these families of graphs contain a
global circuit, defined as a route along the graph which has the topoldgheofd a lengttt, .
that goes to infinity a8 — oo. The results provide new insight in¥% ands in an exactly
solvable context where one can study their dependence on several parameters characterizing
the families of polygon chain graphs. This work extends our recent studies of cyclic families
of graphs [7,22].

From our previous exact calculations B{G, ¢g) andW ({G}, ¢g) on a number of families
of graphs we have inferred several general result8:ofi) for a graphG with well-defined
lattice directions, a sufficient condition fé# to separate the plane into different regions is
that G contains at least one global circuit [19]t, and (ii) the logufor such a graph does
not contain any endpoint singularities. Two other general features are that for graphs that (a)
contain global circuits, (b) cannot be written in the fofn= K, + H [15]% and (c) have
compacts, we have observed th#t (i) passes througly = 0 and (iv) crosses the positive
real axis, thereby always definingga The families of polygon chain graphs studied in this
paper do contain global circuits, and the exact results presented here are in accord with the
above general properties.

The chromatic polynomiaP (G, ¢) has a general decomposition as

Na
P(G.q) = colq) +»_ c;(q)(a;(q)"" (1.3)
j=1

where thez; (¢) andc;.0(q) are independent af, while co(¢) may contaim-dependent terms,
suchag—1)", butdoes not grow with like (const)” with |const| > 1. The expressioty may
be absent. A term,(q) is ‘leading’ if it dominates thes — oo limit of P(G, ¢). The locus
B occurs where there is an abrupt nonanalytic chandg s the leading terms, changes;
thus this locus3 is the solution to the equation of degeneracy of magnitudes of leading terms.
Hence,W is finite and continuous, although nonanalytic, aci®ss

It is convenient to define the following polynomial:

P(Cy, S & k—1
Detgy = D) _ p2 3 g =Z<—1)S( ] )q"“ (1.4)
j=0 s=0

q(q—1
where
a=q-1 (1.5
and P (Cy, q) is the chromatic polynomial for the circuit (cyclic) gragh with & vertices,
P(Cy, q) = d* + (—Dta. (1.6)

t Some families of graphs that do not have regular lattice directions have noncomp#&dhatseparate thgplane

into different regions [16, 18, 21]. The graphs in the present paper do not, in general, have regular lattice structure;
however, they do have the equivalent of a lattice direction, i.e. that of the circuit.

T The complete graph gmvertices, denoted ,,, is the graph in which every vertex is adjacent to every other vertex.
The ‘join’ of graphsG1 andG2, denoted5 1 + G2, is defined by adding bonds linking each vertexGafto each vertex

in Go.
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(@)

(b)

(©)

Figure 1. lllustrations of cyclic and open polygon chain grap}‘qewg_,,, andGel’eZ,gg,m:U with

(e1, €2, e4,m) = (a) (2,2,0,6), (b) (2,2,1,4), (c) (2,3, 2,3). For the cyclic (open) graphs, the
rightmost vertex on each graph is identified with (is distinct from) the leftmost vertex at the same
level, respectively.

This paper is organized as follows. In sections 2 and 3 we present our resuts oy
ands for the open and cyclic polygon chain graphs and some concluding remarks are included
in section 4.

2. Open polygon chain graphs

Before giving our results for the cyclic polygon chain graphs, we discuss the simpler case of
families of open polygon chain graphs comprisediasubunits, each subunit consisting of a
p-sided polygon with one of its vertices attached to a line segment of lepgttiges (bonds).

Thus, the members of each successive pair of polygons are separated from each other by a
distance (gap) oé, bonds along these line segments, with= 0 representing the case of
contiguous polygons. Since each polygon is connected to the rest of the chain at two vertices
(taken to be at the same relative positions on the polygons in all cases), the family of graphs
depends on two additional parameters, namely the number of edges of the polygons between
these two connection vertices, moving in opposite directions along the polysgamgle,. For

e1 # ex We denote the smaller) and larger ) edge lengths as

e, = min(ey, e3) e, = max(ey, e2). (2.1)
Clearly,
e1tey=p. (2.2)

We denote this family of opemw) polygon chain graphs aS., .,.c,.m:0- lllustrations of these
graphs are given in figure 1. Since it is immaterial whether one labels the upper and lower
routes between the left and right-hand points on each polygon where it connects to the rest of
the chain ag; ande; or in the opposite order, as andes,

Gel,ez,eg,m;o = G62,el,eg,m;o~ (23)
The number of vertices is
U(Gel,ez,eg,m;a) =(p+ €g — Dm+1 (24)

and the number of edges or bonds is
e(Gel,eg,e‘q.m;()) =(p+ eg)m~ (2.5)
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The chromatic numbey = 2 if p is even andy = 3if p is odd. The chromatic polynomial
is easily calculated to be

P(Gepepepmior q) = q(a)” (2.6)
where
a1 = (q — 1)%*"'D,. 2.7)
Evidently, the chromatic polynomial has the form of (1.3) wigh=0, N, = 1,¢c1 = g(a;)™
ands, = ¢, where
1

t=————.
pte,—1

(2.8)
Note that this chromatic polynomial does not depend;oor ¢, individually, but instead only
on their sump, i.e., the number of sides of each polygonf.

Let us next consider the limit of an infinitely long chain, i.e.,— oo. Formally, we
denote this limit as

Ly, :m— oo with €1, €2, € fixed. (29)
We find
. . .
W([m'inoo Gfl»vaEgvm:v]’ ‘1) =[(q = D™D, ] (2.10)

The nonanalyticities of thigV function consist of discrete branch point singularities at its
zeros, including the poing = 1 and thep — 2 zeros ofD,; there is no continuous locus of
nonanalyticities ofv; i.e., B = @. If p is odd, thenD, contains a factofq — 2), so that one
of the zeros oW is atq = 2.

Given the relation (2.4), there are also other ways to take the number of vertices to infinity:

L., tey, — o0 with ey, e, m fixed (2.11)

L, :e1— 00 with e, e,, m fixed (2.12)

L., :e;— 00 with ey, e,, m fixed (2.13)
and

L,:p— o0 with e, — e1, e,, m fixed. (2.14)

For theL,, limit, we find

([ im_ Geverepmoa) =a 1. (2.15)

This is analytic for ally so that, in particulai3 = . The W function in equation (2.15) is the
same as théV function for linear and, more generally tree, graphs. This is understandable,
since ag, — oo, the vertices on the linear connecting segments occupy a fraction approaching
unity of the total number of vertices of the graph.

Since the chromatic polynomial (2.6) only dependgpande, through the quantity, it
follows that for this family of open polygon chain graphs, the linfits, L.,, andL , all yield
the same result. Further, from equation (1.4), it follows that in these liffits the same as
that for a circuit graph [7], namely,

w([ lim Gm] q) —g—1 for |g—1>1 (2.16)

p—>00

T One can consider a generalization of this family in which the order of the quantitiesle, can be different for
each polygon. The chromatic polynomial awdfunction for this much larger family of graphs are again given by
(2.6) with (2.7) and by (2.10), respectively.
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andt
’W([IJEnOO Gel_ez,eg,m;,)], q)‘ —1  for lg—1 <1 (2.17)

For this limit, B consists of the circlgy — 1| = 1. Again, these results are easily understood,
since ap — oo, the vertices on the polygonal circuit subgraphs occupy a fraction approaching
unity of the total number of vertices.

3. Cyclic polygon chain graphs

We proceed to our main subject, families of graphs consisting ptsided polygons linked
together to form closed circuits. The other parametesse;, ande,, are the same as for

the open polygonal chains discussed above. Thus, a given cyclic polygonal chain graph is
specified by the four parametees, ez, e,, m), so we denote it a§., .,..,.n, where the cyclic
property is implicitly understood. For the same reason as given above for the open chain, we
have

Gel,ez.eg,m = Gq,el,eg,m- (31)
The number of vertices in the gragh, .,.c,.m iS
n= v(Gel,ez,eg,m) = (P + €g — l)m (32)

and the number of edges (bonds) is the same as for the open@@in,,..,.n) = (p +eg)m.

If pis odd, then the chromatic numbgris 3. If p is even, thery = 2 or 3 depending on
the values ok, ey, e,, andm. In figure 1 we show illustrative examples of families of cyclic
polygon chain graphs. From (3.1), it follows that

P(Gel,ez,eg,ms C]) = P(Gez,el,eg,ms 61) (33)

Using the deletion—contraction theorem to get recursion relations which we then solve,
we calculate the chromatic polynomial

P(Gel,ez,eg,ms C]) = (al)m + (C] - 1)(a2)m (34)

where the terna; is the same as the term appearing in the chromatic polynomial for the open
polygonal chain, (2.7), and

a = (=DP*q g -2+ (1 — @) + (1 - )] (3.5)
= (=P [1 -p= (esl)(—q)s1 -3 (esz)(—q)“}. (3.6)
s=2 s=2

The chromatic polynomial (3.4) has the form of (1.3) wigh= O, N, = 2,c1 = 1,c2 = (¢—1),
andn; = rp, = t, wheret was given in equation (2.8). Note that, owing to the second term,
ay, the chromatic polynomial (3.4) depends on the valueg ahde; individually, in contrast
to the result (2.6) for the open polygon chain, which only depends amde;, through their
sum,p.

Ifthe smaller distance, = 1, thenthe chromatic polynomial (3.4) reduces to the factorized
form

P(Gele,ei,eg,mv 61) = (Dp)mP(Cnca 61) = CI(Q - 1)(Dp)mDnL (37)
where
ne =m(l+e,). (3.8)

T Forreal O< ¢ < ¢.({G}), as well as other regions of tlgeplane that cannot be reached by analytic continuation
from the real intervag > ¢.({G}), one can only determine the magnitydé({G}, ¢)| unambiguously [7].
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Having calculated the chromatic polynomial (3.4), we can next obtaifiitHfeinction and
its continuous locus of nonanalyticitiésfor the various limits (2.9) and (2.11)—(2.14). This
locus is determined as the solution of the degeneracy equation of (honzero) leading terms

las| = laz|. (3.9)

It will be useful to re-express this in the varialkle= ¢ — 1 of equation (1.5). Multiplying
both sides of (3.9) byu + 1|, we obtain

ja%(@” + (=D’a)| = la — L +(=a)* + (=a)*]. (3.10)

(Since the valug = 0, i.e.,a + 1 = 0, is already a solution of (3.9), multiplying both sides of
this equation bya + 1] to get (3.10) does not introduce a distinct spurious zero.)

We first discuss the limits that yield the simplest results. Forthdimit, B consists of
the unit circlelg — 1| = 1 and divides the plane into two regions, the exterior and interior
of this circle, which regions are denotedRsandR,, respectively. g — 1| > 1, thena; is
the dominant term and

w(LﬁkG%%wdﬁ)=q—1 for |g—1] > 1. (3.11)
If |g — 1| < 1, thena, is dominant and
(W([e!iinoo Gm] q)‘ -1 for |g—1 <1 (3.12)

Thatis, in theL, limit, the W function is the same as for the infinite-vertex limit of the circuit
graph. This is expected, sinceasincreases, more and more of the vertices of the graph lie
on a circuit graph where, e.g., the route of the circuit follows eitherthar ¢, bonds of a
given polygon, then traverses thgconnecting bonds to the next polygon, and so forth around
the cyclic chain. As a result of the symmetry (3.3), the, L.,, andL, limits are equivalent;

in this case, we find that fdy — 1| > 1, thea; term is dominant andV is again given by

the right-hand side of (3.11) while fgg — 1| < 1, neither term dominates over the other, and
[W| = 1. The results foW are thus the same as for tiag, limit, and the reason is similar:
asp — oo, the vertices located on the polygons occupy a fraction approaching unity of all of
the vertices.

The most interesting and complicated results are forlthdimit. We have proved a
number of general properties Bf We show calculations @ and comparison with chromatic
zeros in figures 2-9 for the families of cyclic polygon chain graphs. Because of the factorization
(3.7), the families withe; = 1 yield very simple results (see below) so that in the figures we
concentrate on the cases with> 2: (eq, e2) = (2, 2), (2, 3), (2, 4), and(3, 3) and, for each
pair (e1, e2), the values G< e, < 3. The general properties Sfare:

e (B1) Bis compact.

e (B2) B passes througi = 0.

e (B3) B encloses regions in thgplane.

e (B4)if e, = 1, thenB is the unit circlelg — 1| = 1 independent of the values af and
eg; thus, in this case;. = 2. The chromatic zeros @., ., ..,.. lie exactly on this locus,
independently of the values ef, ¢,, andm.

e (B5) if p is even, thery,. = 2.

e (B6)if pisodd and, > 2, theng. < 2 and for fixed(ey, e2), g increases monotonically
ase, increases, approaching 2 from belowegs— co.

To prove (B1), we re-express equation (3.9) in terms of the variable

y=1o _ (3.13)
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Figure 2. Boundarys in theq plane forw function for lim,,_, Geyepeqm with (e1, ez, eg) =
(@ (2,2,0), (b) (2,2,1). Chromatic zeros fom = 14 (i.e.,n = 42 andn = 56 for (@) and {))
are shown for comparison.

Then equation (3.10) becomes
|1 + (_1)pyp—l| — |yeg+e: (yE({—l _ ye[; + (_1)e( + (_l)e;ye(;—e;” (314)

where we have divided (3.9) by *?|, which factor is nonzero far # 1 and thus, in particular,
for the largelg | (small|y|) region of interest here. The necessary and sufficient condition that
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Figure 3. Boundarys in theq plane forw function for lim,,_, Geyepem with (e1, ez, eg) =
@ (2,2,2), (b) (2,2,3). Chromatic zeros fom = 10 (i.e.,n = 50 andrn = 60 for (@) and {))
are shown for comparison.

B is noncompact, i.e. unbounded, is that equation (3.14) has a solutign=dd. Clearly, it
does not have such a solution, which proves property (B1).
For (B2), we use the property that

Dpg=0=D"(p-1 (3.15)
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1.00 - 1
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2.00 1.00 0.00 1.00 2.00 3.00

Re(q)

Figure 4. Boundarys in theq plane forw function for lim,,_, Geyepem with (e1, ez, eg) =
(@ (2,3,0), (b) (2,3,1). Chromatic zeros fom = 14 (i.e.,n = 56 andn = 70 for (@) and {))
are shown for comparison.

so thatja;| = |p — 1| atqg = 0. From the second equivalent formafin equation (3.6), it
follows that|az| = |p — 1| atg = 0 also, so that the poigt = 0 is a solution to equation (3.9)
and hence is on the locu which proves (B2).
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Figure 5. Boundarys in theq plane forw function for lim,,_, Geyepeqm with (e1, ez, eg) =
(@ (2,3,2), (b) (2,3,3). Chromatic zeros fom = 10 (i.e.,n = 60 andn = 70 for (@) and {))
are shown for comparison.

Property (B3) can be proved by explicit solution of (3.9). One also observes from the
results presented in figures 2-9 that in cases wBeatees not contain any multiple pointst,

T In the technical terminology of algebraic geometry [23], a multiple point on an algebraic curve is a point where
several branches of the curve intersect. Ifalbf the branches have different tangents, the multiple point is said to
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Figure 6. Boundarys in theq plane forw function for lim,,_, Geyepeqm with (e1, ez, eg) =
(@ (2,4,0), (b) (2,4,1). Chromatic zeros fom = 10 (i.e.,n = 50 andn = 60 for (@) and {))
are shown for comparison.

the number of regionsy..,. and the number of connected componentg satisfy the relation

Nreg. = Neomp. + 1. As was the case in our earlier work [21], one can get a general upper bound
on the numbew,,,,,. using the Harnack theorem [23] from algebraic geometry, but it is not
very restrictive. To do this, we write the equation (3.9), whose solution g&tasit in terms

have indexs; .
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Figure 7. Boundarys in theq plane forw function for lim,,_, Geyepeqm with (e1, ez, eg) =
(@) (2,4, 2), (b) (2,4, 3). Chromatic zeros fora) m = 8 (i.e.,n = 56) and b) m = 6 (i.e.,n = 48)
are shown for comparison.

of the real and imaginary componentsgobr, more conveniently, af = ¢ — 1. This yields a
polynomial equation of general degre= 2(p+e,) inthese components. Inthe cases without
singular (multiple) points o, the Harnack theorem then gives the upper bavingd,. < 2+1,
wherer, the genus of the algebraic curve comprisigsh = (d — 1)(d — 2)/2 [23]. Thus,

for example, for the lowest cagey, e;, ¢,) = (2, 2, 1), the Harnack theorem gives the upper
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Figure 8. Boundarys in theq plane forw function for lim,,_, Geyepem with (e1, ez, eg) =
(@ 3,3,0), (b) (3,3,1). Chromatic zeros fom = 10 (i.e.,n = 50 andn = 60 for (@) and {))
are shown for comparison.

boundN,,.,. < 37. Clearly, this is a very weak upper bound compared with the actual result
Neomp. = 2. The upper bound becomes even higher for larger valugs ahd hence weaker,
since the result remain$.,,.,. = 2 for all families of the form(ey, ez, e,) = (2, 2, ;). Similar
remarks apply for the Harnack bound applied to other céses,, ¢,).
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Figure 9. Boundarys in theq plane forw function for lim,,_, Geyepeqm with (e1, ez, eg) =
(@) (3,3,2), (b) (3,3, 3). Chromatic zeros for: = 8 (i.e.,n = 56 andn = 64 for (@) and p)) are
shown for comparison.

To prove (B4), we observe that for families whete= 1, because of the factorization
(3.7), for any values oé, ande,, the locusB is the unit circlelg — 1| = 1. The result on
chromatic zeros follows immediately from (3.7) and the fact that the zeros of the chromatic
polynomial of the circuit graph lie exactly on the cir¢gle— 1] = 1 [15].
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To prove property (B5), we first observe that singes even, the left-hand side of
equation (3.10) has the value 2 fgr= 2, i.e., fora = 1. The condition thap is even
means that either boty ande, are even or botla; ande, are odd. In both of these cases,
the right-hand side of equation (3.10) is also equal to Z/fer 2, so thayy = 2 is a solution
of this equation. Furthermore, one easily checks that (3.10) has no solution for larggr real
This yields (B5).

For property (B6) pertaining to odg, we recall that the case = 1 is already covered
by (B4); fore, > 2, we first note that since is odd, one of(e;, e2) is odd and the other is
even; these are denoted,, ande,.;. We next observe that for odd= 2k + 1, D, contains
a factor(¢g — 2) times a polynomial:

Doir1 = (9 — 2) Far1 (3.16)
where

Fou1 =k at ¢ =2 (3.17)
Now let us consider the limg — 2. From equations (3.16) and (3.17), we have

(¢—-2(p -1
G S s

5 as g —> 2. (3.18)

Furthermore,
az —> %(—1)€g+1(6] - 2)(1 +eeven — eudd) as g — 2. (319)

Hence for the chromatic polynomial (3.4),

—)(p—17" C1)e (L ey, — e0gg\"
PGy eomgresms 4 = 2) = [uz(l’)} |:1+ (( )T elve eodd> i| ‘
p—

(3.20)

Since
|1 +eopen — eodd|
p—1

for the relevant case, > 2 considered here, it follows that, taking the— oo limit first,
before thegy — 2 limit, the contribution of the second term in the square brackets, i.ezpthe
term, in equation (3.20), relative to that of the first, i.e., dhderm, goes to zero. Recalling
our order of limits (1.2), it follows that af = 2, the functionW is determined completely by
thea; term. Hence, althougiy anda, both vanish af = 2, this point is not on the locu8
sinceW is determined only by; at this point. This shows that the condition of the degeneracy
of terms|ai(q)| = |a2(q)| is necessary in order that the pointie on the locusB, but, as
noted in connection with equation (3.9), a further necessary (and sufficient) condition is that
this equality in magnitudes, holds, wherganda, are both nonzero leading terms. Sirige
is determined byi; atg = 2, the same as in regiaR, (see below), this shows that < 2,
which was to be proved.

The other property in (B6) follows in a similar manner from the solution to equation (3.10).
The fact thayy. — 2, i.e.,a. — 1, wherea. = ¢g. — 1, is clear from (3.10) since if > 1
(a < 1), the left-hand side diverges (vanishes)egas— oo, precluding equality with the
right-hand side.

We observe several other interesting features of the Icusore, = 0 ande, > 2
and for certain values ak;, ¢,), this locus, as an algebraic curve, may contain one or more
multiple point(s), which are of index 2, i.e., they involve a crossing of four curves forming

<1 (3.21)
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two branches oB. A particularly simple set of families for which this occurs is the set where
e1 = e2 = p/2 = e1p. By an analysis of equation (3.10), we find that for this set there are

Npp =e2—1 (3.22)
multiple points, which occur at

qj=1+é% (3.23)
where

6, = i% ji=01,..., 6122_ 2 for ep,even (3.24)

o, =+ IDT o T3 i eLodd (3.25)

€12 2

For example, in figure 2§ for (e1, e2, ¢;) = (2, 2, 0) one sees that there is one such multiple
point, located afy = g. = 2, while in figure 8) for (e1, 2, ¢,) = (3, 3, 0) there are two
complex-conjugate multiple points, locatedgat= 1 + €57/3, Figure 6 illustrates another
case with a multiple point, nameli,, e2, e,) = (2, 4, 0), for which the multiple point is
atg = g. = 2. Infigures 2-9 one sees that the multiple points that are presesy fer0
disappearwhes, > 1. Figures 4 and 5illustrate a family withodd, namely(es, e2) = (2, 3)
for which B has no multiple points.

In the cases wheug contains multiple point(s) far, = 0, which disappear wheny > 1,
each such disappearance is accompanied by the appearance of a new disconnected component
of B. Ase, increases, the sizes of the regions bounded by these componBritsakase, and
ase, — o0, the regions shrink to points. For example, in figures 2 and 3 one sees that for the
case(2, 2, e,), ase, increases from, = 0toe, > 1, the multiple pointagy = ¢. = 2 thatwas
present foe, = 0 disappears and there appears a disconnected compoteaefiing a new
region, so that the numb@¥.,,,, of (separate, disconnected) components ofcreases from
1to 2. Ase, — oo, this region shrinks to a point gt= % Similarly, in figures 8 and 9 one
sees that for the casey, e;) = (3, 3), ase, increases from O te, > 1, the complex-conjugate
multiple points that were present fey = O atg = 1 + e*7/3 disappear an®,,,,. increases
from 1 to 3. Ase, — oo, the inner regions shrink to points @t~ g +i/2.

Another feature that one observes in the results shown in the figures is that these loci
B do not have any support for Rg) < 0. Since the present families of graphs do not, in
general, have a regular lattice structure, this result is independent of our conjecture [19, 22]
that for families of graphs with regular lattice structure, global circuits are a necessary, but not
sufficient, condition foi3 to have support for Rg) < 0. (Recall that in [20] we exhibited
families of graphs that do not have lattice structure or global circuits but do Rdaing
support for Réq) < 0.)

For W([lim .00 Gy ez.e,.m]- 9), Which henceforth will be abbreviated simply 85 we
have the following general results. In regifin,

W = (a7 = [(g — D™D, ]7  for g e Ry (3.26)

We note that the function on the right-hand side of equation (3.26) is the same as that for the
open chain, (2.10), although in the latter case, the result holds throughout tlyepialhe
whereas for the cyclic chain, the result holds only in regign One can approach the origin,

g = 0 from the left staying within the regioRy, and in this limit, using the property (3.15),

we have

W=(p—1ri  for ¢g—0, gqecR (3.27)
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Let us denote regioR; as the one containing the poipt= 1; this region is contiguous t8;
at the origing = 0. In regionRy,, a; is the dominant term, so that

W|=lap|77  for ge Ry (3.28)

In particular, for families of graphs withy, = 1, where the factorization (3.7) holds,

\W|=|D,|7  for e,=1 and g € R.. (3.29)

For cases where there are additional regiBpenclosed withink,,

|W| = |a1|,,+§,_1 for ¢ € R; enclosed withinRs. (3.30)

Fore, = 0 these additional regions are contiguous wWtthat multiple points ori.
Concerning values oV at special points, we observe that singe< 2, the expression
(3.26) always holds at = 2, so that, as a consequence of the property (3.16),

W(g=2=0 for oddp. (3.31)

Note that this does not follow just from the property that the chromatic polynaPiahnishes
atqg = 2 for odd p, but requires the stronger property tiatontains the factofg — 2)” with
v &« n asn — oo. In contrast, for evepp = 2k, using the property

Dy =1 for ¢ =2 (3.32)
we have
Wi@g=2=1 for evenp. (3.33)

As one approaches = 0 from within regionR,, using (3.15), it follows that
W] = |p — 17 for ¢ >0, geR; (3.34)

in accord with (3.27) and the equality of the magnitud¢Wsf across any point ofs.

In figures 2-9 we have also shown the chromatic zer@s.gf, ., .. for large finite values
of m to compare with then — oo accumulation seB. We first observe that the chromatic
zeros lie quite close to the asymptotic lo&isSecond, the density of chromatic zeros appears
to vanish at multiple points, just as was the case for multiple points on complex-temperature
phase boundaries for which we carried out exact calculations previously [24]. As one increases
e, above 0, so that new components3gbinch off, one still sees a remnant of the reduction of
density on the sides facing the location of the multiple point that had existeg fer0.

4. Conclusions

In this paper we have given exact expressions for the chromatic polyn@ialg) and the
resultant exponent of the ground state entropy for the Potts antiferromagnetrin-thec

limit, W({G}, ¢q) for families of cyclic polygon chain grapls = G., .,..,..- We have studied
several types of limits yielding — oo, namely,L.,, L,, andL,,, the last of which yielded

the most interesting results. From these calculations we have derived the continuous locus,
B, of nonanalyticities oW, which is also the accumulation set of the zeros of the chromatic
polynomial in then — oo limit. Various properties of this locus were proved. A comparison
with the results for the open polygon chain graph shows the important effect of global circuits.
The results of this study agree with and extend our earlier inferences concerning thB,locus
in particular, that a sufficient condition that in the— oo limit the locusB separates the

plane into two or more regions is that the graph has a global circuit with ligé, .. = oco.
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