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Abstract. We present exact calculations of chromatic polynomials for families of cyclic graphs
consisting of linked polygons, where the polygons may be adjacent or separated by a given number
of bonds. From these we calculate the (exponential of the) ground state entropy,W , for theq-state
Potts model on these graphs in the limit of infinitely many vertices. A number of properties are
proved concerning the continuous locus,B, of nonanalyticities inW . Our results provide further
evidence for a general rule concerning the maximal region in the complexq plane to which one
can analytically continue from the physical interval whereS0 > 0.

1. Introduction

Theq-state Potts antiferromagnet (AF) [1, 2] exhibits nonzero ground state entropy,S0 > 0
(without frustration) for sufficiently largeq on a given graph or lattice. This is equivalent
to a ground state degeneracy per siteW > 1, sinceS0 = kB lnW . Such nonzero ground
state entropy is important as an exception to the third law of thermodynamics [3]. The zero-
temperature partition function of the above-mentionedq-state Potts antiferromagnet on a graph
G satisfiesZ(G, q, T = 0)PAF = P(G, q), whereP(G, q) is the chromatic polynomial
expressing the number of ways of colouring the vertices of the graphG with q colours such
that no two adjacent vertices have the same colour [4–6]. Thus

W({G}, q) = lim
n→∞P(G, q)

1/n (1.1)

wheren = v(G) is the number of vertices ofG and{G} = limn→∞G. The minimum number
of colours needed for this colouring ofG is called its chromatic number,χ(G). At certain
special pointsqs (typically qs = 0, 1, . . . , χ(G)), one has the noncommutativity of limits

lim
q→qs

lim
n→∞P(G, q)

1/n 6= lim
n→∞ lim

q→qs
P (G, q)1/n (1.2)

and hence it is necessary to specify the order of the limits in the definition ofW({G}, qs) [7].
As in [7], we shall use the first order of limits here; this has the advantage of removing certain
isolated discontinuities inW . In addition to [2–7], some other previous related works include
[8–22]. SinceP(G, q) is a polynomial, one can generalizeq from Z+ to R and indeed toC.
W({G}, q) is a real analytic function for realq down to a minimum value,qc({G}) [7,14]. For
a given{G}, we denote the continuous locus of non-analyticities ofW asB. This locusB forms
as the accumulation set of the zeros ofP(G, q) (chromatic zeros ofG) asn→∞ [7,9,10,12]
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and satisfiesB(q) = B(q∗). A fundamental question concerning the Potts antiferromagnet
is the form of this locus for a given graph family or lattice and, in particular, the maximal
region in the complexq plane to which one can analytically continue the functionW({G}, q)
from physical values where there is nonzero ground state entropy, i.e.,W > 1. We denote
this region asR1. Further, we denote asqc the maximal point whereB intersects the real axis,
which can occur viaB crossing this axis or via a line segment ofB lying along this axis.

In this work we present exact calculations ofP(G, q) andW({G}, q) for families of cyclic
graphs consisting of linked polygons, where the polygons may be adjacent or separated by a
certain number of bonds. By the term cyclic we mean that these families of graphs contain a
global circuit, defined as a route along the graph which has the topology ofS1 and a length̀g.c.
that goes to infinity asn → ∞. The results provide new insight intoW andB in an exactly
solvable context where one can study their dependence on several parameters characterizing
the families of polygon chain graphs. This work extends our recent studies of cyclic families
of graphs [7,22].

From our previous exact calculations ofP(G, q) andW({G}, q) on a number of families
of graphs we have inferred several general results onB: (i) for a graphG with well-defined
lattice directions, a sufficient condition forB to separate theq plane into different regions is
thatG contains at least one global circuit [19]†, and (ii) the locusB for such a graph does
not contain any endpoint singularities. Two other general features are that for graphs that (a)
contain global circuits, (b) cannot be written in the formG = Kp + H [15]‡ and (c) have
compactB, we have observed thatB (iii) passes throughq = 0 and (iv) crosses the positive
real axis, thereby always defining aqc. The families of polygon chain graphs studied in this
paper do contain global circuits, and the exact results presented here are in accord with the
above general properties.

The chromatic polynomialP(G, q) has a general decomposition as

P(G, q) = c0(q) +
Na∑
j=1

cj (q)(aj (q))
tj n (1.3)

where theaj (q) andcj 6=0(q) are independent ofn, whilec0(q)may containn-dependent terms,
such as(−1)n, but does not grow withn like (const.)n with |const.| > 1. The expressionc0 may
be absent. A terma`(q) is ‘leading’ if it dominates then→∞ limit of P(G, q). The locus
B occurs where there is an abrupt nonanalytic change inW as the leading termsa` changes;
thus this locusB is the solution to the equation of degeneracy of magnitudes of leading terms.
Hence,W is finite and continuous, although nonanalytic, acrossB.

It is convenient to define the following polynomial:

Dk(q) = P(Ck, q)

q(q − 1)
= ak−2

k−2∑
j=0

(−a)−j =
k−2∑
s=0

(−1)s
(
k − 1

s

)
qk−2−s (1.4)

where

a = q − 1 (1.5)

andP(Ck, q) is the chromatic polynomial for the circuit (cyclic) graphCk with k vertices,

P(Ck, q) = ak + (−1)ka. (1.6)

† Some families of graphs that do not have regular lattice directions have noncompact lociB that separate theq plane
into different regions [16, 18, 21]. The graphs in the present paper do not, in general, have regular lattice structure;
however, they do have the equivalent of a lattice direction, i.e. that of the circuit.
‡ The complete graph onp vertices, denotedKp , is the graph in which every vertex is adjacent to every other vertex.
The ‘join’ of graphsG1 andG2, denotedG1 +G2, is defined by adding bonds linking each vertex ofG1 to each vertex
in G2.
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Figure 1. Illustrations of cyclic and open polygon chain graphsGe1,e2,eg ,m andGe1,e2,eg ,m;o with
(e1, e2, eg,m) = (a) (2, 2, 0, 6), (b) (2, 2, 1, 4), (c) (2, 3, 2, 3). For the cyclic (open) graphs, the
rightmost vertex on each graph is identified with (is distinct from) the leftmost vertex at the same
level, respectively.

This paper is organized as follows. In sections 2 and 3 we present our results forP , W ,
andB for the open and cyclic polygon chain graphs and some concluding remarks are included
in section 4.

2. Open polygon chain graphs

Before giving our results for the cyclic polygon chain graphs, we discuss the simpler case of
families of open polygon chain graphs comprised ofm subunits, each subunit consisting of a
p-sided polygon with one of its vertices attached to a line segment of lengtheg edges (bonds).
Thus, the members of each successive pair of polygons are separated from each other by a
distance (gap) ofeg bonds along these line segments, witheg = 0 representing the case of
contiguous polygons. Since each polygon is connected to the rest of the chain at two vertices
(taken to be at the same relative positions on the polygons in all cases), the family of graphs
depends on two additional parameters, namely the number of edges of the polygons between
these two connection vertices, moving in opposite directions along the polygon,e1 ande2. For
e1 6= e2 we denote the smaller (s) and larger (̀) edge lengths as

es ≡ min(e1, e2) e` ≡ max(e1, e2). (2.1)

Clearly,

e1 + e2 = p. (2.2)

We denote this family of open (o) polygon chain graphs asGe1,e2,eg,m;o. Illustrations of these
graphs are given in figure 1. Since it is immaterial whether one labels the upper and lower
routes between the left and right-hand points on each polygon where it connects to the rest of
the chain ase1 ande2 or in the opposite order, ase2 ande1,

Ge1,e2,eg,m;o = Ge2,e1,eg,m;o. (2.3)

The number of vertices is

v(Ge1,e2,eg,m;o) = (p + eg − 1)m + 1 (2.4)

and the number of edges or bonds is

e(Ge1,e2,eg,m;o) = (p + eg)m. (2.5)
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The chromatic numberχ = 2 if p is even andχ = 3 if p is odd. The chromatic polynomial
is easily calculated to be

P(Ge1,e2,eg,m;o, q) = q(a1)
m (2.6)

where

a1 = (q − 1)eg+1Dp. (2.7)

Evidently, the chromatic polynomial has the form of (1.3) withc0 = 0,Na = 1, c1 = q(a1)
−t1

andt1 = t , where

t = 1

p + eg − 1
. (2.8)

Note that this chromatic polynomial does not depend one1 or e2 individually, but instead only
on their sump, i.e., the number of sides of each polygon†.

Let us next consider the limit of an infinitely long chain, i.e.,m → ∞. Formally, we
denote this limit as

Lm : m→∞ with e1, e2, eg fixed. (2.9)

We find

W
([

lim
m→∞Ge1,e2,eg,m;o

]
, q
)
= [(q − 1)eg+1Dp]

1
p+eg−1 . (2.10)

The nonanalyticities of thisW function consist of discrete branch point singularities at its
zeros, including the pointq = 1 and thep − 2 zeros ofDp; there is no continuous locus of
nonanalyticities ofW ; i.e.,B = ∅. If p is odd, thenDp contains a factor(q − 2), so that one
of the zeros ofW is atq = 2.

Given the relation (2.4), there are also other ways to take the number of vertices to infinity:

Leg : eg →∞ with e1, e2, m fixed (2.11)

Le1 : e1→∞ with e2, eg,m fixed (2.12)

Le2 : e2→∞ with e1, eg,m fixed (2.13)

and

Lp : p→∞ with e2 − e1, eg,m fixed. (2.14)

For theLeg limit, we find

W
([

lim
eg→∞

Ge1,e2,eg,m;o
]
, q
)
= q − 1. (2.15)

This is analytic for allq so that, in particular,B = ∅. TheW function in equation (2.15) is the
same as theW function for linear and, more generally tree, graphs. This is understandable,
since aseg →∞, the vertices on the linear connecting segments occupy a fraction approaching
unity of the total number of vertices of the graph.

Since the chromatic polynomial (2.6) only depends one1 ande2 through the quantityp, it
follows that for this family of open polygon chain graphs, the limitsLe1, Le2, andLp all yield
the same result. Further, from equation (1.4), it follows that in these limits,W is the same as
that for a circuit graph [7], namely,

W
([

lim
p→∞Ge1,e2,eg,m;o

]
, q
)
= q − 1 for |q − 1| > 1 (2.16)

† One can consider a generalization of this family in which the order of the quantitiese1 ande2 can be different for
each polygon. The chromatic polynomial andW function for this much larger family of graphs are again given by
(2.6) with (2.7) and by (2.10), respectively.
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and† ∣∣∣W([ lim
p→∞Ge1,e2,eg,m;o

]
, q
)∣∣∣ = 1 for |q − 1| < 1. (2.17)

For this limit,B consists of the circle|q − 1| = 1. Again, these results are easily understood,
since asp→∞, the vertices on the polygonal circuit subgraphs occupy a fraction approaching
unity of the total number of vertices.

3. Cyclic polygon chain graphs

We proceed to our main subject, families of graphs consisting ofm p-sided polygons linked
together to form closed circuits. The other parameters,eg, e1, ande2, are the same as for
the open polygonal chains discussed above. Thus, a given cyclic polygonal chain graph is
specified by the four parameters(e1, e2, eg,m), so we denote it asGe1,e2,eg,m, where the cyclic
property is implicitly understood. For the same reason as given above for the open chain, we
have

Ge1,e2,eg,m = Ge2,e1,eg,m. (3.1)

The number of vertices in the graphGe1,e2,eg,m is

n = v(Ge1,e2,eg,m) = (p + eg − 1)m (3.2)

and the number of edges (bonds) is the same as for the open chain,e(Ge1,e2,eg,m) = (p + eg)m.
If p is odd, then the chromatic numberχ is 3. If p is even, thenχ = 2 or 3 depending on
the values ofe1, e2, eg, andm. In figure 1 we show illustrative examples of families of cyclic
polygon chain graphs. From (3.1), it follows that

P(Ge1,e2,eg,m, q) = P(Ge2,e1,eg,m, q). (3.3)

Using the deletion–contraction theorem to get recursion relations which we then solve,
we calculate the chromatic polynomial

P(Ge1,e2,eg,m, q) = (a1)
m + (q − 1)(a2)

m (3.4)

where the terma1 is the same as the term appearing in the chromatic polynomial for the open
polygonal chain, (2.7), and

a2 = (−1)p+eg q−1[q − 2 + (1− q)e1 + (1− q)e2] (3.5)

= (−1)p+eg

[
1− p −

e1∑
s=2

(
e1

s

)
(−q)s−1−

e2∑
s=2

(
e2

s

)
(−q)s−1

]
. (3.6)

The chromatic polynomial (3.4) has the form of (1.3) withc0 = 0,Na = 2,c1 = 1,c2 = (q−1),
andt1 = t2 = t , wheret was given in equation (2.8). Note that, owing to the second term,
a2, the chromatic polynomial (3.4) depends on the values ofe1 ande2 individually, in contrast
to the result (2.6) for the open polygon chain, which only depends one1 ande2 through their
sum,p.

If the smaller distancees = 1, then the chromatic polynomial (3.4) reduces to the factorized
form

P(Ges=1,e`,eg,m, q) = (Dp)
mP (Cnc , q) = q(q − 1)(Dp)

mDnc (3.7)

where

nc = m(1 + eg). (3.8)

† For real 0< q < qc({G}), as well as other regions of theq plane that cannot be reached by analytic continuation
from the real intervalq > qc({G}), one can only determine the magnitude|W({G}, q)| unambiguously [7].
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Having calculated the chromatic polynomial (3.4), we can next obtain theW function and
its continuous locus of nonanalyticitiesB for the various limits (2.9) and (2.11)–(2.14). This
locus is determined as the solution of the degeneracy equation of (nonzero) leading terms

|a1| = |a2|. (3.9)

It will be useful to re-express this in the variablea = q − 1 of equation (1.5). Multiplying
both sides of (3.9) by|a + 1|, we obtain

|aeg (ap + (−1)pa)| = |a − 1 + (−a)e1 + (−a)e2|. (3.10)

(Since the valueq = 0, i.e.,a + 1= 0, is already a solution of (3.9), multiplying both sides of
this equation by|a + 1| to get (3.10) does not introduce a distinct spurious zero.)

We first discuss the limits that yield the simplest results. For theLeg limit, B consists of
the unit circle|q − 1| = 1 and divides theq plane into two regions, the exterior and interior
of this circle, which regions are denoted asR1 andR2, respectively. If|q − 1| > 1, thena1 is
the dominant term and

W
([

lim
eg→∞

Ge1,e2,eg,m

]
, q
)
= q − 1 for |q − 1| > 1. (3.11)

If |q − 1| < 1, thena2 is dominant and∣∣∣W([ lim
eg→∞

Ge1,e2,eg,m

]
, q
)∣∣∣ = 1 for |q − 1| < 1. (3.12)

That is, in theLg limit, theW function is the same as for the infinite-vertex limit of the circuit
graph. This is expected, since aseg increases, more and more of the vertices of the graph lie
on a circuit graph where, e.g., the route of the circuit follows either thee1 or e2 bonds of a
given polygon, then traverses theeg connecting bonds to the next polygon, and so forth around
the cyclic chain. As a result of the symmetry (3.3), theLe1, Le2, andLp limits are equivalent;
in this case, we find that for|q − 1| > 1, thea1 term is dominant andW is again given by
the right-hand side of (3.11) while for|q − 1| < 1, neither term dominates over the other, and
|W | = 1. The results forW are thus the same as for theLeg limit, and the reason is similar:
asp→∞, the vertices located on the polygons occupy a fraction approaching unity of all of
the vertices.

The most interesting and complicated results are for theLm limit. We have proved a
number of general properties ofB. We show calculations ofB and comparison with chromatic
zeros in figures 2–9 for the families of cyclic polygon chain graphs. Because of the factorization
(3.7), the families withes = 1 yield very simple results (see below) so that in the figures we
concentrate on the cases withes > 2: (e1, e2) = (2, 2), (2, 3), (2, 4), and(3, 3) and, for each
pair (e1, e2), the values 06 eg 6 3. The general properties ofB are:

• (B1) B is compact.
• (B2) B passes throughq = 0.
• (B3) B encloses regions in theq plane.
• (B4) if es = 1, thenB is the unit circle|q − 1| = 1 independent of the values ofe` and
eg; thus, in this case,qc = 2. The chromatic zeros ofGe1,e2,eg,m lie exactly on this locus,
independently of the values ofe`, eg, andm.
• (B5) if p is even, thenqc = 2.
• (B6) if p is odd andes > 2, thenqc < 2 and for fixed(e1, e2), qc increases monotonically

aseg increases, approaching 2 from below aseg →∞.

To prove (B1), we re-express equation (3.9) in terms of the variable

y = 1

a
= 1

q − 1
. (3.13)
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Figure 2. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (2, 2, 0), (b) (2, 2, 1). Chromatic zeros form = 14 (i.e.,n = 42 andn = 56 for (a) and (b))
are shown for comparison.

Then equation (3.10) becomes

|1 + (−1)pyp−1| = |yeg+es (ye`−1− ye` + (−1)e` + (−1)es ye`−es )| (3.14)

where we have divided (3.9) by|aeg+p|, which factor is nonzero forq 6= 1 and thus, in particular,
for the large-|q| (small|y|) region of interest here. The necessary and sufficient condition that
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Figure 3. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (2, 2, 2), (b) (2, 2, 3). Chromatic zeros form = 10 (i.e.,n = 50 andn = 60 for (a) and (b))
are shown for comparison.

B is noncompact, i.e. unbounded, is that equation (3.14) has a solution fory = 0. Clearly, it
does not have such a solution, which proves property (B1).

For (B2), we use the property that

Dp(q = 0) = (−1)p(p − 1) (3.15)
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Figure 4. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (2, 3, 0), (b) (2, 3, 1). Chromatic zeros form = 14 (i.e.,n = 56 andn = 70 for (a) and (b))
are shown for comparison.

so that|a1| = |p − 1| at q = 0. From the second equivalent form ofa2 in equation (3.6), it
follows that|a2| = |p−1| atq = 0 also, so that the pointq = 0 is a solution to equation (3.9)
and hence is on the locusB, which proves (B2).
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Figure 5. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (2, 3, 2), (b) (2, 3, 3). Chromatic zeros form = 10 (i.e.,n = 60 andn = 70 for (a) and (b))
are shown for comparison.

Property (B3) can be proved by explicit solution of (3.9). One also observes from the
results presented in figures 2–9 that in cases whereB does not contain any multiple points†,

† In the technical terminology of algebraic geometry [23], a multiple point on an algebraic curve is a point where
several branches of the curve intersect. If allni of the branches have different tangents, the multiple point is said to
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Figure 6. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (2, 4, 0), (b) (2, 4, 1). Chromatic zeros form = 10 (i.e.,n = 50 andn = 60 for (a) and (b))
are shown for comparison.

the number of regions,Nreg. and the number of connected components onB satisfy the relation
Nreg. = Ncomp.+1. As was the case in our earlier work [21], one can get a general upper bound
on the numberNcomp. using the Harnack theorem [23] from algebraic geometry, but it is not
very restrictive. To do this, we write the equation (3.9), whose solution set isB, out in terms

have indexni .
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Figure 7. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (2, 4, 2), (b) (2, 4, 3). Chromatic zeros for (a)m = 8 (i.e.,n = 56) and (b)m = 6 (i.e.,n = 48)
are shown for comparison.

of the real and imaginary components ofq or, more conveniently, ofa = q − 1. This yields a
polynomial equation of general degreed = 2(p+eg) in these components. In the cases without
singular (multiple) points onB, the Harnack theorem then gives the upper boundNcomp. 6 h+1,
whereh, the genus of the algebraic curve comprisingB, ish = (d − 1)(d − 2)/2 [23]. Thus,
for example, for the lowest case(e1, e2, eg) = (2, 2, 1), the Harnack theorem gives the upper
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Figure 8. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (3, 3, 0), (b) (3, 3, 1). Chromatic zeros form = 10 (i.e.,n = 50 andn = 60 for (a) and (b))
are shown for comparison.

boundNcomp. 6 37. Clearly, this is a very weak upper bound compared with the actual result
Ncomp. = 2. The upper bound becomes even higher for larger values ofeg, and hence weaker,
since the result remainsNcomp. = 2 for all families of the form(e1, e2, eg) = (2, 2, eg). Similar
remarks apply for the Harnack bound applied to other cases(e1, e2, eg).
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Figure 9. BoundaryB in theq plane forW function for limm→∞Ge1,e2,eg ,m with (e1, e2, eg) =
(a) (3, 3, 2), (b) (3, 3, 3). Chromatic zeros form = 8 (i.e.,n = 56 andn = 64 for (a) and (b)) are
shown for comparison.

To prove (B4), we observe that for families wherees = 1, because of the factorization
(3.7), for any values ofe` andeg, the locusB is the unit circle|q − 1| = 1. The result on
chromatic zeros follows immediately from (3.7) and the fact that the zeros of the chromatic
polynomial of the circuit graph lie exactly on the circle|q − 1| = 1 [15].



Cyclic polygon chain graphs 5067

To prove property (B5), we first observe that sincep is even, the left-hand side of
equation (3.10) has the value 2 forq = 2, i.e., fora = 1. The condition thatp is even
means that either bothe1 ande2 are even or bothe1 ande2 are odd. In both of these cases,
the right-hand side of equation (3.10) is also equal to 2 forq = 2, so thatq = 2 is a solution
of this equation. Furthermore, one easily checks that (3.10) has no solution for larger realq.
This yields (B5).

For property (B6) pertaining to oddp, we recall that the casees = 1 is already covered
by (B4); for es > 2, we first note that sincep is odd, one of(e1, e2) is odd and the other is
even; these are denotedeeven andeodd . We next observe that for oddp = 2k + 1,Dp contains
a factor(q − 2) times a polynomial:

D2k+1 = (q − 2)F2k+1 (3.16)

where

F2k+1 = k at q = 2. (3.17)

Now let us consider the limitq → 2. From equations (3.16) and (3.17), we have

a1→ (q − 2)(p − 1)

2
as q → 2. (3.18)

Furthermore,

a2→ 1
2(−1)eg+1(q − 2)(1 + eeven − eodd) as q → 2. (3.19)

Hence for the chromatic polynomial (3.4),

P(Geeven,eodd ,eg,m, q → 2)→
[
(q − 2)(p − 1)

2

]m [
1 +

(
(−1)eg+1(1 + eeven − eodd

p − 1

)m]
.

(3.20)

Since

|1 + eeven − eodd |
p − 1

< 1 (3.21)

for the relevant casees > 2 considered here, it follows that, taking them → ∞ limit first,
before theq → 2 limit, the contribution of the second term in the square brackets, i.e., thea2

term, in equation (3.20), relative to that of the first, i.e., thea1 term, goes to zero. Recalling
our order of limits (1.2), it follows that atq = 2, the functionW is determined completely by
thea1 term. Hence, althougha1 anda2 both vanish atq = 2, this point is not on the locusB
sinceW is determined only bya1 at this point. This shows that the condition of the degeneracy
of terms|a1(q)| = |a2(q)| is necessary in order that the pointq lie on the locusB, but, as
noted in connection with equation (3.9), a further necessary (and sufficient) condition is that
this equality in magnitudes, holds, wherea1 anda2 are both nonzero leading terms. SinceW
is determined bya1 at q = 2, the same as in regionR1 (see below), this shows thatqc < 2,
which was to be proved.

The other property in (B6) follows in a similar manner from the solution to equation (3.10).
The fact thatqc → 2, i.e.,ac → 1, whereac = qc − 1, is clear from (3.10) since ifa > 1
(a < 1), the left-hand side diverges (vanishes) aseg → ∞, precluding equality with the
right-hand side.

We observe several other interesting features of the locusB. For eg = 0 andes > 2
and for certain values of(e1, e2), this locus, as an algebraic curve, may contain one or more
multiple point(s), which are of index 2, i.e., they involve a crossing of four curves forming
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two branches ofB. A particularly simple set of families for which this occurs is the set where
e1 = e2 = p/2≡ e12. By an analysis of equation (3.10), we find that for this set there are

Nm.p. = e12− 1 (3.22)

multiple points, which occur at

qj = 1 + eiθj (3.23)

where

θj = ±2jπ

e12
j = 0, 1, . . . ,

e12− 2

2
for e12 even (3.24)

θj = ± (2j + 1)π

e12
j = 0, 1, . . . ,

e12− 3

2
for e12 odd. (3.25)

For example, in figure 2(a) for (e1, e2, eg) = (2, 2, 0) one sees that there is one such multiple
point, located atq = qc = 2, while in figure 8(a) for (e1, e2, eg) = (3, 3, 0) there are two
complex-conjugate multiple points, located atq = 1 + e±iπ/3. Figure 6 illustrates another
case with a multiple point, namely(e1, e2, eg) = (2, 4, 0), for which the multiple point is
at q = qc = 2. In figures 2–9 one sees that the multiple points that are present foreg = 0
disappear wheneg > 1. Figures 4 and 5 illustrate a family withp odd, namely,(e1, e2) = (2, 3)
for whichB has no multiple points.

In the cases whereB contains multiple point(s) foreg = 0, which disappear wheneg > 1,
each such disappearance is accompanied by the appearance of a new disconnected component
of B. Aseg increases, the sizes of the regions bounded by these components ofB decrease, and
aseg →∞, the regions shrink to points. For example, in figures 2 and 3 one sees that for the
case(2, 2, eg), aseg increases fromeg = 0 toeg > 1, the multiple point atq = qc = 2 that was
present foreg = 0 disappears and there appears a disconnected component ofB defining a new
region, so that the numberNcomp. of (separate, disconnected) components ofB increases from
1 to 2. Aseg →∞, this region shrinks to a point atq = 3

2. Similarly, in figures 8 and 9 one
sees that for the case(e1, e2) = (3, 3), aseg increases from 0 toeg > 1, the complex-conjugate
multiple points that were present foreg = 0 atq = 1 + e±iπ/3 disappear andNcomp. increases
from 1 to 3. Aseg →∞, the inner regions shrink to points atq ' 3

2 ± i/2.
Another feature that one observes in the results shown in the figures is that these loci

B do not have any support for Re(q) < 0. Since the present families of graphs do not, in
general, have a regular lattice structure, this result is independent of our conjecture [19, 22]
that for families of graphs with regular lattice structure, global circuits are a necessary, but not
sufficient, condition forB to have support for Re(q) < 0. (Recall that in [20] we exhibited
families of graphs that do not have lattice structure or global circuits but do haveB having
support for Re(q) < 0.)

ForW([limm→∞Ge1,e2,eg,m], q), which henceforth will be abbreviated simply asW , we
have the following general results. In regionR1,

W = (a1)
1

p+eg−1 = [(q − 1)eg+1Dp]
1

p+eg−1 for q ∈ R1. (3.26)

We note that the function on the right-hand side of equation (3.26) is the same as that for the
open chain, (2.10), although in the latter case, the result holds throughout the fullq plane
whereas for the cyclic chain, the result holds only in regionR1. One can approach the origin,
q = 0 from the left staying within the regionR1, and in this limit, using the property (3.15),
we have

W = (p − 1)
1

p+eg−1 for q → 0, q ∈ R1. (3.27)
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Let us denote regionR2 as the one containing the pointq = 1; this region is contiguous toR1

at the origin,q = 0. In regionR2, a2 is the dominant term, so that

|W | = |a2|
1

p+eg−1 for q ∈ R2. (3.28)

In particular, for families of graphs withes = 1, where the factorization (3.7) holds,

|W | = |Dp|
1

p+eg−1 for es = 1 and q ∈ R2. (3.29)

For cases where there are additional regionsRj enclosed withinR2,

|W | = |a1|
1

p+eg−1 for q ∈ Rj enclosed withinR2. (3.30)

For eg = 0 these additional regions are contiguous withR1 at multiple points onB.
Concerning values ofW at special points, we observe that sinceqc 6 2, the expression

(3.26) always holds atq = 2, so that, as a consequence of the property (3.16),

W(q = 2) = 0 for oddp. (3.31)

Note that this does not follow just from the property that the chromatic polynomialP vanishes
atq = 2 for oddp, but requires the stronger property thatP contains the factor(q − 2)ν with
ν ∝ n asn→∞. In contrast, for evenp = 2k, using the property

D2k = 1 for q = 2 (3.32)

we have

W(q = 2) = 1 for evenp. (3.33)

As one approachesq = 0 from within regionR2, using (3.15), it follows that

|W | = |p − 1| 1
p+eg−1 for q → 0, q ∈ R2 (3.34)

in accord with (3.27) and the equality of the magnitude of|W | across any point onB.
In figures 2–9 we have also shown the chromatic zeros ofGe1,e2,eg,m for large finite values

of m to compare with them → ∞ accumulation setB. We first observe that the chromatic
zeros lie quite close to the asymptotic locusB. Second, the density of chromatic zeros appears
to vanish at multiple points, just as was the case for multiple points on complex-temperature
phase boundaries for which we carried out exact calculations previously [24]. As one increases
eg above 0, so that new components ofB pinch off, one still sees a remnant of the reduction of
density on the sides facing the location of the multiple point that had existed foreg = 0.

4. Conclusions

In this paper we have given exact expressions for the chromatic polynomialP(G, q) and the
resultant exponent of the ground state entropy for the Potts antiferromagnet in then → ∞
limit, W({G}, q) for families of cyclic polygon chain graphsG = Ge1,e2,eg,m. We have studied
several types of limits yieldingn → ∞, namely,Leg , Lp, andLm, the last of which yielded
the most interesting results. From these calculations we have derived the continuous locus,
B, of nonanalyticities ofW , which is also the accumulation set of the zeros of the chromatic
polynomial in then→∞ limit. Various properties of this locus were proved. A comparison
with the results for the open polygon chain graph shows the important effect of global circuits.
The results of this study agree with and extend our earlier inferences concerning the locusB,
in particular, that a sufficient condition that in then → ∞ limit the locusB separates theq
plane into two or more regions is that the graph has a global circuit with limn→∞ `g.c. = ∞.
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